375 research outputs found

    Machine-Checked Proofs For Realizability Checking Algorithms

    Full text link
    Virtual integration techniques focus on building architectural models of systems that can be analyzed early in the design cycle to try to lower cost, reduce risk, and improve quality of complex embedded systems. Given appropriate architectural descriptions, assume/guarantee contracts, and compositional reasoning rules, these techniques can be used to prove important safety properties about the architecture prior to system construction. For these proofs to be meaningful, each leaf-level component contract must be realizable; i.e., it is possible to construct a component such that for any input allowed by the contract assumptions, there is some output value that the component can produce that satisfies the contract guarantees. We have recently proposed (in [1]) a contract-based realizability checking algorithm for assume/guarantee contracts over infinite theories supported by SMT solvers such as linear integer/real arithmetic and uninterpreted functions. In that work, we used an SMT solver and an algorithm similar to k-induction to establish the realizability of a contract, and justified our approach via a hand proof. Given the central importance of realizability to our virtual integration approach, we wanted additional confidence that our approach was sound. This paper describes a complete formalization of the approach in the Coq proof and specification language. During formalization, we found several small mistakes and missing assumptions in our reasoning. Although these did not compromise the correctness of the algorithm used in the checking tools, they point to the value of machine-checked formalization. In addition, we believe this is the first machine-checked formalization for a realizability algorithm.Comment: 14 pages, 1 figur

    The Brazilian Workers' Party: Recent Histories/Recent History

    Get PDF

    Validity-Guided Synthesis of Reactive Systems from Assume-Guarantee Contracts

    Full text link
    Automated synthesis of reactive systems from specifications has been a topic of research for decades. Recently, a variety of approaches have been proposed to extend synthesis of reactive systems from proposi- tional specifications towards specifications over rich theories. We propose a novel, completely automated approach to program synthesis which reduces the problem to deciding the validity of a set of forall-exists formulas. In spirit of IC3 / PDR, our problem space is recursively refined by blocking out regions of unsafe states, aiming to discover a fixpoint that describes safe reactions. If such a fixpoint is found, we construct a witness that is directly translated into an implementation. We implemented the algorithm on top of the JKind model checker, and exercised it against contracts written using the Lustre specification language. Experimental results show how the new algorithm outperforms JKinds already existing synthesis procedure based on k-induction and addresses soundness issues in the k-inductive approach with respect to unrealizable results.Comment: 18 pages, 5 figures, 2 table

    Architectural mismatch tolerance

    Get PDF
    The integrity of complex software systems built from existing components is becoming more dependent on the integrity of the mechanisms used to interconnect these components and, in particular, on the ability of these mechanisms to cope with architectural mismatches that might exist between components. There is a need to detect and handle (i.e. to tolerate) architectural mismatches during runtime because in the majority of practical situations it is impossible to localize and correct all such mismatches during development time. When developing complex software systems, the problem is not only to identify the appropriate components, but also to make sure that these components are interconnected in a way that allows mismatches to be tolerated. The resulting architectural solution should be a system based on the existing components, which are independent in their nature, but are able to interact in well-understood ways. To find such a solution we apply general principles of fault tolerance to dealing with arch itectural mismatche

    Algebraic totality, towards completeness

    Get PDF
    Finiteness spaces constitute a categorical model of Linear Logic (LL) whose objects can be seen as linearly topologised spaces, (a class of topological vector spaces introduced by Lefschetz in 1942) and morphisms as continuous linear maps. First, we recall definitions of finiteness spaces and describe their basic properties deduced from the general theory of linearly topologised spaces. Then we give an interpretation of LL based on linear algebra. Second, thanks to separation properties, we can introduce an algebraic notion of totality candidate in the framework of linearly topologised spaces: a totality candidate is a closed affine subspace which does not contain 0. We show that finiteness spaces with totality candidates constitute a model of classical LL. Finally, we give a barycentric simply typed lambda-calculus, with booleans B{\mathcal{B}} and a conditional operator, which can be interpreted in this model. We prove completeness at type Bn→B{\mathcal{B}}^n\to{\mathcal{B}} for every n by an algebraic method

    A comparison of winter wheat cultivar rankings in groups of Polish locations

    Get PDF
    The grouping of locations from local-scale multi-environmental trials (METs) into megaenvironments has been criticized. Some European countries, e.g. the Czech Republic, Poland and Germany, have been characterized as possessing homogeneous environmental conditions. For aligned environmental conditions, it has been assumed that cultivar rankings will be similar and consequently cannot be used to designate mega-environments. An example of METs at the local scale is the Polish Post Registration Variety Testing System. The objective of this study was to determine groups of test sites within 16 Polish regions which are characterized by similar yield ranking of 50 winter wheat cultivars over three growing seasons (2011–2013). The compatibility of these cultivar yield rankings across regions was evaluated using Pearson correlation coefficients. Thereby, the 16 regions were divided into six groups (mega-environments) of locations. Regions within each group have similar cultivar rankings, whereas between groups, we observed different cultivar rankings, indicating crossover interactions. Besides similar cultivar yield responses the regions within megaenvironments were characterized also by similar environmental (soil and/or climate) conditions

    Block public access: Trust safety verification of access control policies

    Get PDF
    © 2020 Owner/Author. Data stored in cloud services is highly sensitive and so access to it is controlled via policies written in domain-specific languages (DSLs). The expressiveness of these DSLs provides users flexibility to cover a wide variety of uses cases, however, unintended misconfigurations can lead to potential security issues. We introduce Block Public Access, a tool that formally verifies policies to ensure that they only allow access to trusted principals, i.e. that they prohibit access to the general public. To this end, we formalize the notion of Trust Safety that formally characterizes whether or not a policy allows unconstrained (public) access. Next, we present a method to compile the policy down to a logical formula whose unsatisfiability can be (1) checked by SMT and (2) ensures Trust Safety. The constructs of the policy DSLs render unsatisfiability checking PSPACE-complete, which precludes verifying the millions of requests per second seen at cloud scale. Hence, we present an approach that leverages the structure of the policy DSL to compute a much smaller residual policy that corresponds only to untrusted accesses. Our approach allows Block Public Access to, in the common case, syntactically verify Trust Safety without having to query the SMT solver. We have implemented Block Public Access and present an evaluation showing how the above optimization yields a low-latency policy verifier that the S3 team at AWS has integrated into their authorization system, where it is currently in production, analyzing millions of policies everyday to ensure that client buckets do not grant unintended public access

    A Lightweight Formalization of the Metatheory of Bisimulation-Up-To

    Get PDF
    International audienceBisimilarity of two processes is formally established by producing a bisimulation relation that contains those two processes and obeys certain closure properties. In many situations, particularly when the under-lying labeled transition system is unbounded, these bisimulation relations can be large and even infinite. The bisimulation-up-to technique has been developed to reduce the size of the relations being computed while retaining soundness, that is, the guarantee of the existence of a bisimulation. Such techniques are increasingly becoming a critical ingredient in the automated checking of bisimilarity. This paper is devoted to the formalization of the meta theory of several major bisimulation-up-to techniques for the process calculi CCS and the π-calculus (with replication). Our formalization is based on recent work on the proof theory of least and greatest fixpoints, particularly the use of relations defined (co-)inductively, and of co-inductive proofs about such relations, as implemented in the Abella theorem prover. An important feature of our formalization is that our definitions of the bisimulation-up-to relations are, in most cases, straightforward translations of published informal definitions, and our proofs clarify several technical details of the informal descriptions. Since the logic behind Abella also supports λ-tree syntax and generic reasoning using the ∇-quantifier, our treatment of the π-calculus is both direct and natural

    Stratified Abstraction of Access Control Policies

    Get PDF
    The shift to cloud-based APIs has made application security critically depend on understanding and reasoning about policies that regulate access to cloud resources. We present stratified predicate abstraction, a new approach that summarizes complex security policies into a compact set of positive and declarative statements that precisely state who has access to a resource. We have implemented stratified abstraction and deployed it as the engine powering AWS’s IAM Access Analyzer service, and hence, demonstrate how formal methods and SMT can be used for security policy explanation

    Formal Model-Based Assurance Cases in Isabelle/SACM : An Autonomous Underwater Vehicle Case Study

    Get PDF
    Isabelle/SACM is a tool for automated construction of model-based assurance cases with integrated formal methods, based on the Isabelle proof assistant. Assurance cases show how a system is safe to operate, through a human comprehensible argument demonstrating that the requirements are satisfied, using evidence of various provenances. They are usually required for certification of critical systems, often with evidence that originates from formal methods. Automating assurance cases increases rigour, and helps with maintenance and evolution. In this paper we apply Isabelle/SACM to a fragment of the assurance case for an autonomous underwater vehicle demonstrator. We encode the metric unit system (SI) in Isabelle, to allow modelling requirements and state spaces using physical units. We develop a behavioural model in the graphical RoboChart state machine language, embed the artifacts into Isabelle/SACM, and use it to demonstrate satisfaction of the requirements
    • …
    corecore